wq101alpha.dos 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005
  1. //alpha 1
  2. //rank(Ts_ArgMax(SignedPower((returns<0?stddev(returns,20):close), 2), 5))-0.5
  3. def WQAlpha1(close){
  4. ts = mimax(pow(iif(ratios(close) - 1 < 0, mstd(ratios(close) - 1, 20), close), 2.0), 5)
  5. return rowRank(X=ts, percent=true) - 0.5
  6. }
  7. //alpha 2
  8. //(-1 * correlation(rank(delta(log(volume), 2)), rank(((close - open) / open)), 6))
  9. def WQAlpha2(vol, close, open){
  10. delta = log(vol) - log(mfirst(vol, 3))
  11. rank1 = rowRank(delta, percent=true)
  12. rank2 = rowRank((close - open) \ open, percent=true)
  13. return -mcorr(rank1, rank2, 6)
  14. }
  15. //alpha 3
  16. //(-1 * correlation(rank(open), rank(volume), 10))
  17. def WQAlpha3(vol, open){
  18. return -mcorr(rowRank(open, percent=true), rowRank(vol, percent=true), 10)
  19. }
  20. //alpha 4
  21. //(-1 * Ts_Rank(rank(low), 9))
  22. def WQAlpha4(low){
  23. return -mrank(rowRank(low, percent=true), true, 9)
  24. }
  25. //alpha 5
  26. //(rank((open - (sum(vwap, 10) / 10))) * (-1 * abs(rank((close - vwap)))))
  27. def WQAlpha5(vwap, open, close){
  28. rank1 = rowRank((open - (msum(vwap, 10) \ 10)), percent=true)
  29. rank2 = rowRank((close - vwap), percent=true)
  30. return rank1 * (-1 * abs(rank2))
  31. }
  32. //alpha 6
  33. //(-1 * correlation(open, volume, 10))
  34. def WQAlpha6(vol, open){
  35. return -mcorr(open, vol, 10)
  36. }
  37. //alpha 7
  38. //((adv20 < volume) ? ((-1 * ts_rank(abs(delta(close, 7)), 60)) * sign(delta(close, 7))) : (-1 * 1))
  39. def WQAlpha7(vol, close){
  40. delta = close - mfirst(close, 8)
  41. return iif(mavg(vol, 20) < vol, -mrank(abs(delta), true, 60) * sign(delta), -1)
  42. }
  43. //alpha 8
  44. //(-1 * rank(((sum(open, 5) * sum(returns, 5)) - delay((sum(open, 5) * sum(returns, 5)), 10))))
  45. def WQAlpha8(open, close){
  46. sums = msum(open, 5) * msum((ratios(close) - 1), 5)
  47. return -rowRank((sums - mfirst(sums, 11)), percent=true)
  48. }
  49. //alpha 9
  50. // ((0 < ts_min(delta(close, 1), 5)) ? delta(close, 1) : ((ts_max(delta(close, 1), 5) < 0) ? delta(close, 1) : (-1 * delta(close, 1))))
  51. def WQAlpha9(close){
  52. delta = close - mfirst(close, 2)
  53. iffalse = iif(mmax(delta, 5) < 0, delta, -delta)
  54. return iif(0 < mmin(delta, 5), delta, iffalse)
  55. }
  56. //alpha 10
  57. //rank(((0 < ts_min(delta(close, 1), 4)) ? delta(close, 1) : ((ts_max(delta(close, 1), 4) < 0) ? delta(close, 1) : (-1 * delta(close, 1)))))
  58. def WQAlpha10(close){
  59. delta = close - mfirst(close, 2)
  60. iffalse = iif(mmax(delta, 4) < 0, delta, -delta)
  61. return rowRank(iif(0 < mmin(delta, 4), delta, iffalse), percent=true)
  62. }
  63. //alpha 11
  64. //((rank(ts_max((vwap - close), 3)) + rank(ts_min((vwap - close), 3))) * rank(delta(volume, 3)))
  65. def WQAlpha11(vwap, vol, close){
  66. delta = vol - mfirst(vol, 4)
  67. rank1 = rowRank(mmax((vwap - close), 3), percent=true)
  68. rank2 = rowRank(mmin((vwap - close), 3), percent=true)
  69. rank3 = rowRank(delta, percent=true)
  70. return (rank1 + rank2) * rank3
  71. }
  72. //alpha 12
  73. //(sign(delta(volume, 1)) * (-1 * delta(close, 1)))
  74. def WQAlpha12(vol, close){
  75. return sign((vol - mfirst(vol, 2))) * (-1 * (close - mfirst(close, 2)))
  76. }
  77. //alpha 13
  78. //(-1 * rank(covariance(rank(close), rank(volume), 5)))
  79. def WQAlpha13(vol, close){
  80. return -rowRank(mcovar(rowRank(close, percent=true), rowRank(vol, percent=true), 5), percent=true)
  81. }
  82. //alpha 14
  83. //((-1 * rank(delta(returns, 3))) * correlation(open, volume, 10))
  84. def WQAlpha14(vol, open, close){
  85. returns = ratios(close) - 1
  86. delta = returns - mfirst(returns, 4)
  87. return -rowRank(delta, percent=true) * mcovar(open, vol, 10)
  88. }
  89. //alpha 15
  90. //(-1 * sum(rank(correlation(rank(high), rank(volume), 3)), 3))
  91. def WQAlpha15(vol, high){
  92. return -msum(rowRank(mcorr(rowRank(high, percent=true), rowRank(vol, percent=true), 3), percent=true), 3)
  93. }
  94. //alpha 16
  95. //(-1 * rank(covariance(rank(high), rank(volume), 5)))
  96. def WQAlpha16(vol, high){
  97. return -rowRank(mcovar(rowRank(high, percent=true), rowRank(vol, percent=true), 5), percent=true)
  98. }
  99. //alpha 17
  100. //(((-1 * rank(ts_rank(close, 10))) * rank(delta(delta(close, 1), 1))) * rank(ts_rank((volume / adv20), 5)))
  101. def WQAlpha17(vol, close){
  102. rank1 = rowRank(mrank(close, true, 10), percent=true)
  103. rank2 = rowRank((close - mfirst(close, 2)) - mfirst((close - mfirst(close, 2)), 2), percent=true)
  104. rank3 = rowRank(mrank((vol \ mavg(vol, 20)), true, 5), percent=true)
  105. return -rank1 * rank2 * rank3
  106. }
  107. //alpha 18
  108. //(-1 * rank(((stddev(abs((close - open)), 5) + (close - open)) + correlation(close, open, 10))))
  109. def WQAlpha18(close, open){
  110. return -rowRank((mstd(abs(close - open), 5) + close - open + mcorr(close, open, 10)), percent=true)
  111. }
  112. //alpha 19
  113. //((-1 * sign(((close - delay(close, 7)) + delta(close, 7)))) * (1 + rank((1 + sum(returns, 250)))))
  114. def WQAlpha19(close){
  115. return -sign(close - mfirst(close, 8) + close - mfirst(close, 8)) * (1 + rowRank((1 + msum((ratios(close) - 1), 250)), percent=true))
  116. }
  117. //alpha 20
  118. //(((-1 * rank((open - delay(high, 1)))) * rank((open - delay(close, 1)))) * rank((open - delay(low, 1))))
  119. def WQAlpha20(open, close, high, low){
  120. rank1 = rowRank((open - mfirst(high, 2)), percent=true)
  121. rank2 = rowRank((open - mfirst(close, 2)), percent=true)
  122. rank3 = rowRank((open - mfirst(low, 2)), percent=true)
  123. return -rank1 * rank2 * rank3
  124. }
  125. //alpha 21
  126. //((((sum(close, 8) / 8) + stddev(close, 8)) < (sum(close, 2) / 2)) ? (-1 * 1) : (((sum(close, 2) / 2) < ((sum(close, 8) / 8) - stddev(close, 8))) ? 1 : (((1 < (volume / adv20)) || ((volume / adv20) == 1)) ? 1 : (-1 * 1))))
  127. def WQAlpha21(close, vol){
  128. cond1 = (msum(close, 8) \ 8 + mstd(close, 8)) < (msum(close, 2) \ 2)
  129. cond2 = (msum(close, 2) \ 2) < (msum(close, 8) \ 8 - mstd(close, 8))
  130. cond3 = (1 < (vol \ mavg(vol, 20))) || (vol \ mavg(vol, 20) == 1)
  131. return iif(cond1, -1, iif(cond2, 1, iif(cond3, 1, -1)))
  132. }
  133. //alpha 22
  134. //(-1 * (delta(correlation(high, volume, 5), 5) * rank(stddev(close, 20))))
  135. def WQAlpha22(close, vol, high){
  136. delta = mcorr(high, vol, 5) - mfirst(mcorr(high, vol, 5), 6)
  137. return -delta * rowRank(mstd(close, 20), percent=true)
  138. }
  139. //alpha 23
  140. //(((sum(high, 20) / 20) < high) ? (-1 * delta(high, 2)) : 0)
  141. def WQAlpha23(high){
  142. delta = high - mfirst(high, 3)
  143. return iif((msum(high, 20) \ 20 < high), -delta, 0)
  144. }
  145. //alpha 24
  146. //((((delta((sum(close, 100) / 100), 100) / delay(close, 100)) < 0.05) || ((delta((sum(close, 100) / 100), 100) / delay(close, 100)) == 0.05)) ? (-1 * (close - ts_min(close, 100))) : (-1 * delta(close, 3)))
  147. def WQAlpha24(close){
  148. cond = (msum(close, 100) \ 100 - mfirst(msum(close, 100) \ 100, 101)) \ mfirst(close, 101) <= 0.05
  149. return iif(cond, -(close - mmin(close, 100)), -(close - mfirst(close, 4)))
  150. }
  151. //alpha 25
  152. //rank(((((-1 * returns) * adv20) * vwap) * (high - close)))
  153. def WQAlpha25(close, vol, high, vwap){
  154. return rowRank((-(ratios(close) - 1) * mavg(vol, 20) * vwap * (high -close)), percent=true)
  155. }
  156. //alpha 26
  157. //(-1 * ts_max(correlation(ts_rank(volume, 5), ts_rank(high, 5), 5), 3))
  158. def WQAlpha26(vol, high){
  159. return -mmax(mcorr(mrank(vol, true, 5), mrank(high, true, 5), 5), 3)
  160. }
  161. //alpha 27
  162. //((0.5 < rank((sum(correlation(rank(volume), rank(vwap), 6), 2) / 2.0))) ? (-1 * 1) : 1)
  163. def WQAlpha27(vol, vwap){
  164. return iif(0.5 < rowRank((msum(mcorr(rowRank(vol, percent=true), rowRank(vwap, percent=true), 6), 2) \ 2.0), percent=true), -1, 1)
  165. }
  166. //alpha 28
  167. //scale(((correlation(adv20, low, 5) + ((high + low) / 2)) - close))
  168. def WQAlpha28(vol, high, low, close){
  169. toscale = mcorr(mavg(vol, 20), low, 5) + ((high + low) \ 2) - close
  170. return toscale \ rowSum(abs(toscale))
  171. }
  172. //alpha 29
  173. //(min(product(rank(rank(scale(log(sum(ts_min(rank(rank((-1 * rank(delta((close - 1), 5))))), 2), 1))))), 1), 5) + ts_rank(delay((-1 * returns), 6), 5))
  174. def WQAlpha29(close){
  175. toscale = log(mmin(rowRank(rowRank((-rowRank((close - 1 - mfirst(close - 1, 6)), percent=true)), percent=true), percent=true), 2))
  176. scale = toscale \ rowSum(abs(toscale))
  177. ranks = rowRank(rowRank(scale, percent=true), percent=true)
  178. return mmin(ranks, 5) + mrank(mfirst(-(ratios(close) - 1), 7), true, 5)
  179. }
  180. //alpha 30
  181. //(((1.0 - rank(((sign((close - delay(close, 1))) + sign((delay(close, 1) - delay(close, 2)))) + sign((delay(close, 2) - delay(close, 3)))))) * sum(volume, 5)) / sum(volume, 20))
  182. def WQAlpha30(vol, close){
  183. rank1 = rowRank(sign(close - mfirst(close, 2)) + sign(mfirst(close, 2) - mfirst(close, 3)) + sign(mfirst(close, 3) - mfirst(close, 4)), percent=true)
  184. return (1.0 - rank1) * msum(vol, 5) \ msum(vol, 20)
  185. }
  186. //alpha 31
  187. // ((rank(rank(rank(decay_linear((-1 * rank(rank(delta(close, 10)))), 10)))) + rank((-1 * delta(close, 3)))) + sign(scale(correlation(adv20, low, 12))))
  188. def WQAlpha31(vol, close, low){
  189. decay_linear = mavg(-rowRank(rowRank((close - mfirst(close, 11)), percent=true), percent=true), 1..10)
  190. rank1 = rowRank(rowRank(rowRank(decay_linear, percent=true), percent=true), percent=true)
  191. rank2 = rowRank(-(close - mfirst(close, 4)), percent=true)
  192. toscale = mcorr(mavg(vol, 20), low, 12)
  193. scale = toscale \ rowSum(abs(toscale))
  194. return rank1 + rank2 + sign(scale)
  195. }
  196. //alpha 32
  197. //(scale(((sum(close, 7) / 7) - close)) + (20 * scale(correlation(vwap, delay(close, 5), 230))))
  198. def WQAlpha32(close, vwap){
  199. toscale1 = msum(close, 7) \ 7 - close
  200. scale1 = toscale1 \ rowSum(abs(toscale1))
  201. toscale2 = mcorr(vwap, mfirst(close, 6), 230)
  202. scale2 = toscale2 \ rowSum(abs(toscale2))
  203. return scale1 + 20 * scale2
  204. }
  205. //alpha 33
  206. //rank((-1 * ((1 - (open / close))^1)))
  207. def WQAlpha33(open, close){
  208. return rowRank((open \ close - 1), percent=true)
  209. }
  210. //alpha 34
  211. //rank(((1 - rank((stddev(returns, 2) / stddev(returns, 5)))) + (1 - rank(delta(close, 1)))))
  212. def WQAlpha34(close){
  213. return rowRank(1 - rowRank((mstd(ratios(close) - 1, 2) \ mstd(ratios(close) - 1, 5)), percent=true) + 1 - rowRank((close - mfirst(close, 2)), percent=true), percent=true)
  214. }
  215. //alpha 35
  216. //((Ts_Rank(volume, 32) * (1 - Ts_Rank(((close + high) - low), 16))) * (1 - Ts_Rank(returns, 32)))
  217. def WQAlpha35(vol, close, high, low){
  218. return mrank(vol, true, 32) * (1 - mrank((close + high - low), true, 16)) * (1 - mrank((ratios(close) - 1), true, 32))
  219. }
  220. //alpha 36
  221. //(((((2.21 * rank(correlation((close - open), delay(volume, 1), 15))) + (0.7 * rank((open - close)))) + (0.73 * rank(Ts_Rank(delay((-1 * returns), 6), 5)))) + rank(abs(correlation(vwap, adv20, 6)))) + (0.6 * rank((((sum(close, 200) / 200) - open) * (close - open)))))
  222. def WQAlpha36(vol, open, close, vwap){
  223. return 2.21 * rowRank(mcorr((close - open), mfirst(vol, 2), 15), percent=true) + 0.7 * rowRank((open - close), percent=true) + 0.73 * rowRank(mrank(mfirst(-(ratios(close) - 1), 7), true, 5), percent=true) + rowRank(abs(mcorr(vwap, mavg(vol, 20), 6)), percent=true) + 0.6 * rowRank((msum(close, 200) \ 200 - open) * (close - open), percent=true)
  224. }
  225. //alpha 37
  226. //(rank(correlation(delay((open - close), 1), close, 200)) + rank((open - close)))
  227. def WQAlpha37(open, close){
  228. return rowRank(mcorr(mfirst((open - close), 2), close, 200), percent=true) + rowRank((open - close), percent=true)
  229. }
  230. //alpha 38
  231. //((-1 * rank(Ts_Rank(close, 10))) * rank((close / open)))
  232. def WQAlpha38(open, close){
  233. return -rowRank(mrank(close, true, 10), percent=true) * rowRank((close \ open), percent=true)
  234. }
  235. //alpha 39
  236. //((-1 * rank((delta(close, 7) * (1 - rank(decay_linear((volume / adv20), 9)))))) * (1 + rank(sum(returns, 250))))
  237. def WQAlpha39(vol, close){
  238. decay_linear = mavg((vol \ mavg(vol, 20)), 1..9)
  239. return -rowRank((close - mfirst(close, 8)) * (1 - rowRank(decay_linear, percent=true)), percent=true) * (1 + rowRank(msum(ratios(close - 1), 250), percent=true))
  240. }
  241. //alpha 40
  242. //((-1 * rank(stddev(high, 10))) * correlation(high, volume, 10))
  243. def WQAlpha40(vol, high){
  244. return -rowRank(mstd(high, 10), percent=true) * mcorr(high, vol, 10)
  245. }
  246. //alpha 41
  247. //(((high * low)^0.5) - vwap)
  248. def WQAlpha41(high, low, vwap){
  249. return pow(high * low, 0.5) - vwap
  250. }
  251. //alpha 42
  252. //(rank((vwap - close)) / rank((vwap + close)))
  253. def WQAlpha42(vwap, close){
  254. return rowRank((vwap - close), percent=true) \ rowRank((vwap + close), percent=true)
  255. }
  256. //alpha 43
  257. //(ts_rank((volume / adv20), 20) * ts_rank((-1 * delta(close, 7)), 8))
  258. def WQAlpha43(vol, close){
  259. return mrank((vol \ mavg(vol, 20)), true, 20) * mrank(-(close - mfirst(close, 8)), true, 8)
  260. }
  261. //alpha 44
  262. //(-1 * correlation(high, rank(volume), 5))
  263. def WQAlpha44(vol, high){
  264. return -mcorr(high, rowRank(vol, percent=true), 5)
  265. }
  266. //alpha 45
  267. //(-1 * ((rank((sum(delay(close, 5), 20) / 20)) * correlation(close, volume, 2)) * rank(correlation(sum(close, 5), sum(close, 20), 2))))
  268. def WQAlpha45(vol, close){
  269. return -rowRank(msum(mfirst(close, 6), 20) \ 20, percent=true) * mcorr(close, vol, 2) * rowRank(mcorr(msum(close, 5), msum(close, 20), 2), percent=true)
  270. }
  271. //alpha 46
  272. //((0.25 < (((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10))) ? (-1 * 1) : (((((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10)) < 0) ? 1 : ((-1 * 1) * (close - delay(close, 1)))))
  273. def WQAlpha46(close){
  274. cond = (mfirst(close, 21) - mfirst(close, 11)) \ 10 - (mfirst(close, 11) - close) \ 10
  275. return iif(0.25 < cond, -1, iif(cond < 0, 1, (mfirst(close, 2) - close)))
  276. }
  277. //alpha 47
  278. //((((rank((1 / close)) * volume) / adv20) * ((high * rank((high - close))) / (sum(high, 5) / 5))) - rank((vwap - delay(vwap, 5))))
  279. def WQAlpha47(vol, close, high, vwap){
  280. return rowRank(1 \ close, percent=true) * vol \ mavg(vol, 20) * (high * rowRank(high - close, percent=true) \ (msum(high, 5) \ 5)) - rowRank(vwap - mfirst(vwap, 6), percent=true)
  281. }
  282. //alpha 49
  283. //(((((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10)) < (-1 * 0.1)) ? 1 : ((-1 * 1) * (close - delay(close, 1))))
  284. def WQAlpha49(close){
  285. cond = ((mfirst(close, 21) - mfirst(close, 11)) \ 10 - (mfirst(close, 11) - close) \ 10) < -0.1
  286. return iif(cond, 1, mfirst(close, 2) - close)
  287. }
  288. //alpha 50
  289. //(-1 * ts_max(rank(correlation(rank(volume), rank(vwap), 5)), 5))
  290. def WQAlpha50(vol, vwap){
  291. return -mmax(rowRank(mcorr(rowRank(vol, percent=true), rowRank(vwap, percent=true), 5), percent=true), 5)
  292. }
  293. //alpha 51
  294. //(((((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10)) < (-1 * 0.05)) ? 1 : ((-1 * 1) * (close - delay(close, 1))))
  295. def WQAlpha51(close){
  296. cond = (mfirst(close, 21) - mfirst(close, 11)) \ 10 - (mfirst(close, 11) - close) \ 10 < -0.05
  297. return iif(cond, 1, -(close - mfirst(close, 2)))
  298. }
  299. //alpha 52
  300. //((((-1 * ts_min(low, 5)) + delay(ts_min(low, 5), 5)) * rank(((sum(returns, 240) - sum(returns, 20)) / 220))) * ts_rank(volume, 5))
  301. def WQAlpha52(vol, close, low){
  302. return (-mmin(low, 5) + mfirst(mmin(low, 5), 6)) * rowRank((msum(ratios(close) - 1, 240) - msum(ratios(close) - 1, 220)) \ 220, percent=true) * mrank(vol, true, 5)
  303. }
  304. //alpha 53
  305. //(-1 * delta((((close - low) - (high - close)) / (close - low)), 9))
  306. def WQAlpha53(close, high, low){
  307. return -(((close - low) - (high - close)) \ (close - low) - mfirst(((close - low) - (high - close)) \ (close - low), 10))
  308. }
  309. //alpha 54
  310. //((-1 * ((low - close) * (open^5))) / ((low - high) * (close^5)))
  311. def WQAlpha54(open, close, high, low){
  312. return -(low - close) * pow(open, 5) \ ((low - high) * pow(close, 5))
  313. }
  314. //alpha 55
  315. //(-1 * correlation(rank(((close - ts_min(low, 12)) / (ts_max(high, 12) - ts_min(low, 12)))), rank(volume), 6))
  316. def WQAlpha55(vol, close, high, low){
  317. return -mcorr(rowRank((close - mmin(low, 12)) \ (mmax(high, 12) - mmin(low, 12)), percent=true), rowRank(vol, percent=true), 6)
  318. }
  319. //alpha 57
  320. //(0 - (1 * ((close - vwap) / decay_linear(rank(ts_argmax(close, 30)), 2))))
  321. def WQAlpha57(close, vwap){
  322. return -(close - vwap) \ mavg(rowRank(mimax(close, 30), percent=true), 1..2)
  323. }
  324. //alpha 60
  325. //(0 - (1 * ((2 * scale(rank(((((close - low) - (high - close)) / (high - low)) * volume)))) - scale(rank(ts_argmax(close, 10))))))
  326. def WQAlpha60(vol, close, high, low){
  327. toscale1 = rowRank(((close - low) - (high - close)) \ (high - low) * vol, percent=true)
  328. scale1 = toscale1 \ rowSum(abs(toscale1))
  329. toscale2 = rowRank(mimax(close, 10), percent=true)
  330. scale2 = toscale2 \ rowSum(abs(toscale2))
  331. return -(2 * scale1 - scale2)
  332. }
  333. //alpha 61
  334. //(rank((vwap - ts_min(vwap, 16.1219))) < rank(correlation(vwap, adv180, 17.9282)))
  335. def WQAlpha61(vol, vwap){
  336. return rowRank(vwap - mmin(vwap, 16), percent=true) < rowRank(mcorr(vwap, mavg(vol, 180), 18), percent=true)
  337. }
  338. //alpha 62
  339. //((rank(correlation(vwap, sum(adv20, 22.4101), 9.91009)) < rank(((rank(open) + rank(open)) < (rank(((high + low) / 2)) + rank(high))))) * -1)
  340. def WQAlpha62(vol, vwap, open, high, low){
  341. return (rowRank(mcorr(vwap, msum(mavg(vol, 20), 22), 10), percent=true) < rowRank((rowRank(open, percent=true) + rowRank(open, percent=true)) < (rowRank((high + low) \ 2, percent=true) + rowRank(high, percent=true)), percent=true)) * (-1)
  342. }
  343. //alpha 64
  344. //((rank(correlation(sum(((open * 0.178404) + (low * (1 - 0.178404))), 12.7054), sum(adv120, 12.7054), 16.6208)) < rank(delta(((((high + low) / 2) * 0.178404) + (vwap * (1 - 0.178404))), 3.69741))) * -1)
  345. def WQAlpha64(vol, vwap, open, high, low){
  346. rank1 = rowRank(mcorr(msum(open * 0.178404 + low * (1 - 0.178404), 13), msum(mavg(vol, 120), 13), 17), percent=true)
  347. deltax = (high + low) \ 2 * 0.178404 + vwap * (1 - 0.178404)
  348. rank2 = rowRank(deltax - mfirst(deltax, 5), percent=true)
  349. return (rank1 < rank2) * (-1)
  350. }
  351. //alpha 65
  352. //((rank(correlation(((open * 0.00817205) + (vwap * (1 - 0.00817205))), sum(adv60, 8.6911), 6.40374)) < rank((open - ts_min(open, 13.635)))) * -1)
  353. def WQAlpha65(vol, vwap, open){
  354. rank1 = rowRank(mcorr((open * 0.00817205 + vwap * (1 - 0.00817205)), msum(mavg(vol, 60), 9), 6), percent=true)
  355. rank2 = rowRank(open - mmin(open, 14), percent=true)
  356. return (rank1 < rank2) * (-1)
  357. }
  358. //alpha 66
  359. //((rank(decay_linear(delta(vwap, 3.51013), 7.23052)) + Ts_Rank(decay_linear(((((low * 0.96633) + (low * (1 - 0.96633))) - vwap) / (open - ((high + low) / 2))), 11.4157), 6.72611)) * -1)
  360. def WQAlpha66(vwap, high, low, open){
  361. return (rowRank(mavg(vwap - mfirst(vwap, 5), 1..7), percent=true) + mrank(mavg((low - vwap) \ (open - (high - low) \ 2), 1..11), true, 11)) * (-1)
  362. }
  363. //alpha 68
  364. //((Ts_Rank(correlation(rank(high), rank(adv15), 8.91644), 13.9333) < rank(delta(((close * 0.518371) + (low * (1 - 0.518371))), 1.06157))) * -1)
  365. def WQAlpha68(vol, close, high, low){
  366. rank1 = mrank(mcorr(rowRank(high, percent=true), rowRank(mavg(vol, 15), percent=true), 9), true, 14)
  367. deltax = close * 0.518371 + low * (1 - 0.518371)
  368. rank2 = rowRank(deltax - mfirst(deltax, 2), percent=true)
  369. return (rank1 < rank2) * (-1)
  370. }
  371. //alpha 71
  372. //max(Ts_Rank(decay_linear(correlation(Ts_Rank(close, 3.43976), Ts_Rank(adv180, 12.0647), 18.0175), 4.20501), 15.6948), Ts_Rank(decay_linear((rank(((low + open) - (vwap + vwap)))^2), 16.4662), 4.4388))
  373. def WQAlpha71(vol, vwap, close, open, low){
  374. decay_linear1 = mavg(mcorr(mrank(close, true, 3), mrank(mavg(vol, 180), true, 12), 18), 1..4)
  375. rank1 = mrank(decay_linear1, true, 16)
  376. decay_linear2 = mavg(pow(rowRank(low + open - (vwap + vwap), percent=true), 2), 1..16)
  377. rank2 = mrank(decay_linear2, true, 4)
  378. return max(rank1, rank2)
  379. }
  380. //alpha 72
  381. //(rank(decay_linear(correlation(((high + low) / 2), adv40, 8.93345), 10.1519)) / rank(decay_linear(correlation(Ts_Rank(vwap, 3.72469), Ts_Rank(volume, 18.5188), 6.86671), 2.95011)))
  382. def WQAlpha72(vol, vwap, high, low){
  383. rank1 = rowRank(mavg(mcorr((high + low) \ 2, mavg(vol, 40), 9), 1..10), percent=true)
  384. rank2 = rowRank(mavg(mcorr(mrank(vwap, true, 4), mrank(vol, true, 19), 7), 1..3), percent=true)
  385. return rank1 \ rank2
  386. }
  387. //alpha 73
  388. //(max(rank(decay_linear(delta(vwap, 4.72775), 2.91864)), Ts_Rank(decay_linear(((delta(((open * 0.147155) + (low * (1 - 0.147155))), 2.03608) / ((open * 0.147155) + (low * (1 - 0.147155)))) * -1), 3.33829), 16.7411)) * -1)
  389. def WQAlpha73(vwap, open, low){
  390. rank1 = rowRank(mavg(vwap - mfirst(vwap, 6), 1..3), percent=true)
  391. deltax = open * 0.147155 + low * (1 - 0.147155)
  392. delta = deltax - mfirst(deltax, 3)
  393. rank2 = mrank(mavg(delta \ deltax * (-1), 1..3), true, 17)
  394. return max(rank1, rank2) * (-1)
  395. }
  396. //alpha 74
  397. //((rank(correlation(close, sum(adv30, 37.4843), 15.1365)) < rank(correlation(rank(((high * 0.0261661) + (vwap * (1 - 0.0261661)))), rank(volume), 11.4791))) * -1)
  398. def WQAlpha74(vol, vwap, close, high){
  399. rank1 = rowRank(mcorr(close, msum(mavg(vol, 30), 37), 15), percent=true)
  400. rank2 = rowRank(mcorr(rowRank(rowRank(high * 0.0261661 + vwap * (1 - 0.0261661), percent=true), percent=true), rowRank(vol, percent=true), 11), percent=true)
  401. return (rank1 < rank2) * (-1)
  402. }
  403. //alpha 75
  404. //(rank(correlation(vwap, volume, 4.24304)) < rank(correlation(rank(low), rank(adv50), 12.4413)))
  405. def WQAlpha75(vol, vwap, low){
  406. return rowRank(mcorr(vwap, vol, 4), percent=true) < rowRank(mcorr(rowRank(low, percent=true), rowRank(mavg(vol, 50), percent=true), 12), percent=true)
  407. }
  408. //alpha 77
  409. //min(rank(decay_linear(((((high + low) / 2) + high) - (vwap + high)), 20.0451)), rank(decay_linear(correlation(((high + low) / 2), adv40, 3.1614), 5.64125)))
  410. def WQAlpha77(vol, vwap, high, low){
  411. rank1 = rowRank(mavg((high + low) \ 2 + high - (vwap + high), 1..20), percent=true)
  412. rank2 = rowRank(mavg(mcorr((high + low) \ 2, mavg(vol, 40), 3), 1..6), percent=true)
  413. return min(rank1, rank2)
  414. }
  415. //alpha 78
  416. //(rank(correlation(sum(((low * 0.352233) + (vwap * (1 - 0.352233))), 19.7428), sum(adv40, 19.7428), 6.83313))^rank(correlation(rank(vwap), rank(volume), 5.77492)))
  417. def WQAlpha78(vol, vwap, low){
  418. rank1 = rowRank(mcorr(msum(low * 0.352233 + vwap * (1 - 0.352233), 20), msum(mavg(vol, 40), 20), 7), percent=true)
  419. rank2 = rowRank(mcorr(rowRank(vwap, percent=true), rowRank(vol, percent=true), 6), percent=true)
  420. return pow(rank1, rank2)
  421. }
  422. //alpha 81
  423. //((rank(Log(product(rank((rank(correlation(vwap, sum(adv10, 49.6054), 8.47743))^4)), 14.9655))) < rank(correlation(rank(vwap), rank(volume), 5.07914))) * -1)
  424. def WQAlpha81(vol, vwap){
  425. rank1 = rowRank(log(mprod(rowRank(pow(rowRank(mcorr(vwap, msum(mavg(vol, 10), 49), 8), percent=true), 4), percent=true), 15)), percent=true)
  426. rank2 = rowRank(mcorr(rowRank(vwap, percent=true), rowRank(vol, percent=true), 5), percent=true)
  427. return (rank1 < rank2) * (-1)
  428. }
  429. //alpha 83
  430. //((rank(delay(((high - low) / (sum(close, 5) / 5)), 2)) * rank(rank(volume))) / (((high - low) / (sum(close, 5) / 5)) / (vwap - close)))
  431. def WQAlpha83(vol, vwap, close, high, low){
  432. return rowRank(mfirst((high - low) \ (msum(close, 5) \ 5), 3), percent=true) * rowRank(rowRank(vol, percent=true), percent=true) \ (((high - low) \ (msum(close, 5) \ 5)) \ (vwap - close))
  433. }
  434. //alpha 84
  435. //SignedPower(Ts_Rank((vwap - ts_max(vwap, 15.3217)), 20.7127), delta(close, 4.96796))
  436. def WQAlpha84(vwap, close){
  437. return pow(mrank(vwap - mmax(vwap, 15), true, 20), close - mfirst(close, 6))
  438. }
  439. //alpha 85
  440. //(rank(correlation(((high * 0.876703) + (close * (1 - 0.876703))), adv30, 9.61331))^rank(correlation(Ts_Rank(((high + low) / 2), 3.70596), Ts_Rank(volume, 10.1595), 7.11408)))
  441. def WQAlpha85(vol, close, high, low){
  442. rank1 = rowRank(mcorr(high * 0.876703 + close * (1 - 0.876703), mavg(vol, 30), 10), percent=true)
  443. rank2 = rowRank(mcorr(mrank((high + low) \ 2, true, 4), mrank(vol, true, 10), 7), percent=true)
  444. return pow(rank1, rank2)
  445. }
  446. //alpha 86
  447. //((Ts_Rank(correlation(close, sum(adv20, 14.7444), 6.00049), 20.4195) < rank(((open + close) - (vwap + open)))) * -1)
  448. def WQAlpha86(vol, vwap, open, close){
  449. rank1 = mrank(mcorr(close, msum(mavg(vol, 20), 15), 6), true, 20)
  450. rank2 = rowRank(open + close - (vwap + open), percent=true)
  451. return (rank1 < rank2) * (-1)
  452. }
  453. //alpha 88
  454. //min(rank(decay_linear(((rank(open) + rank(low)) - (rank(high) + rank(close))), 8.06882)), Ts_Rank(decay_linear(correlation(Ts_Rank(close, 8.44728), Ts_Rank(adv60, 20.6966), 8.01266), 6.65053), 2.61957))
  455. def WQAlpha88(vol, open, close, high, low){
  456. rank1 = rowRank(mavg(rowRank(open, percent=true) + rowRank(low, percent=true) - (rowRank(high, percent=true) + rowRank(close, percent=true)), 1..8), percent=true)
  457. rank2 = mrank(mavg(mcorr(mrank(close, true, 8), mrank(mavg(vol, 60), true, 21), 8), 1..7), true, 3)
  458. return min(rank1, rank2)
  459. }
  460. //alpha 92
  461. //min(Ts_Rank(decay_linear(((((high + low) / 2) + close) < (low + open)), 14.7221), 18.8683), Ts_Rank(decay_linear(correlation(rank(low), rank(adv30), 7.58555), 6.94024), 6.80584))
  462. def WQAlpha92(vol, open, close, high, low){
  463. rank1 = mrank(mavg(((high + low) \ 2 + close) < (low + open), 1..15), true, 19)
  464. rank2 = mrank(mavg(mcorr(rowRank(low, percent=true), rowRank(mavg(vol, 30), percent=true), 8), 1..7), true, 7)
  465. return min(rank1, rank2)
  466. }
  467. //alpha 94
  468. //((rank((vwap - ts_min(vwap, 11.5783)))^Ts_Rank(correlation(Ts_Rank(vwap, 19.6462), Ts_Rank(adv60, 4.02992), 18.0926), 2.70756)) * -1)
  469. def WQAlpha94(vol, vwap){
  470. rank1 = rowRank(vwap - mmin(vwap, 12), percent=true)
  471. rank2 = mrank(mcorr(mrank(vwap, true, 20), mrank(mavg(vol, 60), true, 4), 18), true, 3)
  472. return pow(rank1, rank2) * (-1)
  473. }
  474. //alpha 95
  475. //(rank((open - ts_min(open, 12.4105))) < Ts_Rank((rank(correlation(sum(((high + low) / 2), 19.1351), sum(adv40, 19.1351), 12.8742))^5), 11.7584))
  476. def WQAlpha95(vol, open, high, low){
  477. rank1 = rowRank(open - mmin(open, 12), percent=true)
  478. rank2 = mrank(pow(rowRank(mcorr(msum((high + low) \ 2, 19), msum(mavg(vol, 40), 19), 13), percent=true), 5), true, 12)
  479. return rank1 < rank2
  480. }
  481. //alpha 96
  482. //(max(Ts_Rank(decay_linear(correlation(rank(vwap), rank(volume), 3.83878), 4.16783), 8.38151), Ts_Rank(decay_linear(Ts_ArgMax(correlation(Ts_Rank(close, 7.45404), Ts_Rank(adv60, 4.13242), 3.65459), 12.6556), 14.0365), 13.4143)) * -1)
  483. def WQAlpha96(vol, vwap, close){
  484. rank1 = mrank(mavg(mcorr(rowRank(vwap, percent=true), rowRank(vol, percent=true), 4), 1..4), true, 8)
  485. rank2 = mrank(mavg(mimax(mcorr(mrank(close, true, 7), mrank(mavg(vol, 60), true, 4), 4), 13), 1..14), true, 13)
  486. return max(rank1, rank2) * (-1)
  487. }
  488. //alpha 98
  489. //(rank(decay_linear(correlation(vwap, sum(adv5, 26.4719), 4.58418), 7.18088)) - rank(decay_linear(Ts_Rank(Ts_ArgMin(correlation(rank(open), rank(adv15), 20.8187), 8.62571), 6.95668), 8.07206)))
  490. def WQAlpha98(vwap, open, vol){
  491. return rowRank(X=mavg(mcorr(vwap, msum(mavg(vol, 5), 26), 5), 1..7), percent=true) - rowRank(X=mavg(mrank(9 - mimin(mcorr(rowRank(X=open, percent=true), rowRank(X=mavg(vol, 15), percent=true), 21), 9), true, 7), 1..8), percent=true)
  492. }
  493. //alpha 99
  494. //((rank(correlation(sum(((high + low) / 2), 19.8975), sum(adv60, 19.8975), 8.8136)) < rank(correlation(low, volume, 6.28259))) * -1)
  495. def WQAlpha99(vol, high, low){
  496. rank1 = rowRank(mcorr(msum((high + low) \ 2, 20), msum(mavg(vol, 60), 20), 9), percent=true)
  497. rank2 = rowRank(mcorr(low, vol, 6), percent=true)
  498. return (rank1 < rank2) * (-1)
  499. }
  500. //alpha 101
  501. //((close - open) / ((high - low) + .001))
  502. def WQAlpha101(close, open, high, low){
  503. return ((close - open) \ (high - low + 0.001));
  504. }
  505. //2. Factors with industry classification information:
  506. //The calculation process includes industry neutralization and requires complex operations such as context by.
  507. //These factors take panel data as parameters and return panel data.
  508. //Industry classification standards are not uniform. In order to facilitate generalization, we make certain adjustments to the formula.
  509. //In this module, levels of classification are ignored; instead calculations applies directly to all bits of the industry classification.
  510. //These factors are alpha 48,56,58,59,63,67,69,70,76,79,80,82,87,89,90,91,93,97,100.
  511. //alpha 48
  512. //(indneutralize(((correlation(delta(close, 1), delta(delay(close, 1), 1), 250) * delta(close, 1)) / close), IndClass.subindustry) / sum(((delta(close, 1) / delay(close, 1))^2), 250))
  513. def WQAlpha48(close, indclass){
  514. x = mcorr(close - mfirst(close, 2), mfirst(close, 2) - mfirst(mfirst(close, 2), 2), 250) * (close - mfirst(close, 2)) \ close
  515. tmpsum = msum(pow((close - mfirst(close, 2)) \ mfirst(close, 2), 2), 250)
  516. return byRow(contextby{demean, , indclass.row(0)}, x) \ tmpsum
  517. }
  518. //alpha 56
  519. //(0 - (1 * (rank((sum(returns, 10) / sum(sum(returns, 2), 3))) * rank((returns * cap)))))
  520. def WQAlpha56(close, cap){
  521. tmp1 = msum(ratios(close) - 1, 10) \ msum(msum(ratios(close) - 1, 2), 3)
  522. tmp2 = each(mul, (ratios(close) - 1), cap.row(0))
  523. return (-rowRank(tmp1) * rowRank(tmp2))
  524. }
  525. //alpha 58
  526. //(-1 * Ts_Rank(decay_linear(correlation(IndNeutralize(vwap, IndClass.sector), volume, 3.92795), 7.89291), 5.50322))
  527. def WQAlpha58(vol, vwap, indclass){
  528. tmp = byRow(contextby{demean, , indclass.row(0)}, vwap)
  529. return -mrank(mavg(mcorr(tmp, vol, 4), 1..8), true, 6)
  530. }
  531. //alpha 59
  532. //(-1 * Ts_Rank(decay_linear(correlation(IndNeutralize(((vwap * 0.728317) + (vwap * (1 - 0.728317))), IndClass.industry), volume, 4.25197), 16.2289), 8.19648))
  533. def WQAlpha59(vol, vwap, indclass){
  534. tmp = byRow(contextby{demean, , indclass.row(0)}, vwap * 0.728317 + vwap * (1 - 0.728317))
  535. return -mrank(mavg(mcorr(tmp, vol, 4), 1..16), true, 8)
  536. }
  537. //alpha 63
  538. //((rank(decay_linear(delta(IndNeutralize(close, IndClass.industry), 2.25164), 8.22237)) - rank(decay_linear(correlation(((vwap * 0.318108) + (open * (1 - 0.318108))), sum(adv180, 37.2467), 13.557), 12.2883))) * -1)
  539. def WQAlpha63(vol, open, close, vwap, indclass){
  540. tmp = byRow(contextby{demean, , indclass.row(0)}, close)
  541. decay1 = mavg(tmp - mfirst(tmp, 3), 1..8)
  542. decay2 = mavg(mcorr(vwap * 0.318108 + open * (1 - 0.318108), msum(mavg(vol, 180), 37), 14), 1..12)
  543. return ((rowRank(decay1, percent=true) - rowRank(decay2, percent=true)) * (-1))
  544. }
  545. //alpha 67
  546. //((rank((high - ts_min(high, 2.14593)))^rank(correlation(IndNeutralize(vwap, IndClass.sector), IndNeutralize(adv20, IndClass.subindustry), 6.02936))) * -1)
  547. def WQAlpha67(vol, high, vwap, indclass){
  548. tmp_vwap = byRow(contextby{demean, , indclass.row(0)}, vwap)
  549. tmp_adv = byRow(contextby{demean, , indclass.row(0)}, mavg(vol, 20))
  550. tmpcorr = mcorr(tmp_vwap, tmp_adv, 6)
  551. return (pow(rowRank((high - mmin(high, 2)), percent=true), rowRank(tmpcorr, percent=true)) * (-1))
  552. }
  553. //alpha 69
  554. //((rank(ts_max(delta(IndNeutralize(vwap, IndClass.industry), 2.72412), 4.79344))^Ts_Rank(correlation(((close * 0.490655) + (vwap * (1 - 0.490655))), adv20, 4.92416), 9.0615)) * -1)
  555. def WQAlpha69(vol, close, vwap, indclass){
  556. tmp = byRow(contextby{demean, , indclass.row(0)}, vwap)
  557. tmpmax = mmax(tmp - mfirst(tmp, 4), 5)
  558. trank = mrank(mcorr(close * 0.490655 + vwap * (1 - 0.490655), mavg(vol, 20), 5), true, 9)
  559. return (pow(rowRank(tmpmax, percent=true), trank) * (-1))
  560. }
  561. //alpha 70
  562. //((rank(delta(vwap, 1.29456))^Ts_Rank(correlation(IndNeutralize(close, IndClass.industry), adv50, 17.8256), 17.9171)) * -1)
  563. def WQAlpha70(vol, close, vwap, indclass){
  564. tmp = byRow(contextby{demean, , indclass.row(0)}, close)
  565. tmpdelta = vwap - mfirst(vwap, 2)
  566. trank = mrank(mcorr(tmp, mavg(vol, 50), 18), true, 18)
  567. return (pow(rowRank(tmpdelta, percent=true), trank) * (-1))
  568. }
  569. //alpha 76
  570. //(max(rank(decay_linear(delta(vwap, 1.24383), 11.8259)), Ts_Rank(decay_linear(Ts_Rank(correlation(IndNeutralize(low, IndClass.sector), adv81, 8.14941), 19.569), 17.1543), 19.383)) * -1)
  571. def WQAlpha76(vol, low, vwap, indclass){
  572. tmp = byRow(contextby{demean, , indclass.row(0)}, low)
  573. decay = mavg(vwap - mfirst(vwap, 2), 1..12)
  574. trank = mrank(mavg(mrank(mcorr(tmp, mavg(vol, 81), 8), true, 20), 1..17), true, 19)
  575. tmprank = rowRank(decay, percent=true)
  576. return (max(tmprank, trank) * (-1))
  577. }
  578. //alpha 79
  579. //(rank(delta(IndNeutralize(((close * 0.60733) + (open * (1 - 0.60733))), IndClass.sector), 1.23438)) < rank(correlation(Ts_Rank(vwap, 3.60973), Ts_Rank(adv150, 9.18637), 14.6644)))
  580. def WQAlpha79(vol, open, close, vwap, indclass){
  581. tmpavg = byRow(contextby{avg, , indclass.row(0)}, close * 0.60733 + open * (1 - 0.60733))
  582. delta = tmpavg - mfirst(tmpavg, 2)
  583. tmpcorr = mcorr(mrank(vwap, true, 4), mrank(mavg(vol, 150), true, 9), 15)
  584. return (rowRank(delta, percent=true) < rowRank(tmpcorr, percent=true))
  585. }
  586. //alpha 80
  587. //((rank(Sign(delta(IndNeutralize(((open * 0.868128) + (high * (1 - 0.868128))), IndClass.industry), 4.04545)))^Ts_Rank(correlation(high, adv10, 5.11456), 5.53756)) * -1)
  588. def WQAlpha80(vol, open, high, indclass){
  589. tmpavg = byRow(contextby{avg, , indclass.row(0)}, open * 0.868128 + high * (1 - 0.868128))
  590. signdelta = sign(tmpavg - mfirst(tmpavg, 5))
  591. trank = mrank(mcorr(high, mavg(vol, 10), 5), true, 6)
  592. return pow(rowRank(signdelta, percent=true), trank)
  593. }
  594. //alpha 82
  595. //(min(rank(decay_linear(delta(open, 1.46063), 14.8717)), Ts_Rank(decay_linear(correlation(IndNeutralize(volume, IndClass.sector), ((open * 0.634196) + (open * (1 - 0.634196))), 17.4842), 6.92131), 13.4283)) * -1)
  596. def WQAlpha82(vol, open, indclass){
  597. tmp = byRow(contextby{demean, , indclass.row(0)}, vol)
  598. decay = mavg(open - mfirst(open, 2), 1..15)
  599. trank = mrank(mavg(mcorr(tmp, open * 0.634196 + open * (1 - 0.634196), 17), 1..7), true, 13)
  600. return min(rowRank(decay, percent=true), trank) * (-1)
  601. }
  602. //alpha 87
  603. //(max(rank(decay_linear(delta(((close * 0.369701) + (vwap * (1 - 0.369701))), 1.91233), 2.65461)), Ts_Rank(decay_linear(abs(correlation(IndNeutralize(adv81, IndClass.industry), close, 13.4132)), 4.89768), 14.4535)) * -1)
  604. def WQAlpha87(vol, close, vwap, indclass){
  605. adv81 = mavg(vol, 81)
  606. decay = mavg(close * 0.369701 + vwap * (1 - 0.369701) - mfirst(close * 0.369701 + vwap * (1 - 0.369701), 3), 1..3)
  607. tmp = byRow(contextby{demean, , indclass.row(0)}, adv81)
  608. trank = mrank(mavg(abs(mcorr(tmp, close, 13)), 1..5), true, 14)
  609. return max(rowRank(decay, percent=true), trank) * (-1)
  610. }
  611. //alpha 89
  612. //(Ts_Rank(decay_linear(correlation(((low * 0.967285) + (low * (1 - 0.967285))), adv10, 6.94279), 5.51607), 3.79744) - Ts_Rank(decay_linear(delta(IndNeutralize(vwap, IndClass.industry), 3.48158), 10.1466), 15.3012))
  613. def WQAlpha89(vol, low, vwap, indclass){
  614. tmp = byRow(contextby{demean, , indclass.row(0)}, vwap)
  615. return mrank(mavg(mcorr(low * 0.967285 + low * (1 - 0.967285), mavg(vol, 10), 7), 1..6), true, 4) - mrank(mavg(tmp- mfirst(tmp, 4), 1..10), true, 15)
  616. }
  617. //alpha 90
  618. //((rank((close - ts_max(close, 4.66719)))^Ts_Rank(correlation(IndNeutralize(adv40, IndClass.subindustry), low, 5.38375), 3.21856)) * -1)
  619. def WQAlpha90(vol, low, close, indclass){
  620. adv40 = mavg(vol, 40)
  621. tmpclose = close - mmax(close, 5)
  622. tmp = byRow(contextby{demean, , indclass.row(0)}, adv40)
  623. trank = mrank(mcorr(tmp, low, 5), true, 3)
  624. return (pow(rowRank(tmpclose, percent=true), trank) * (-1))
  625. }
  626. //alpha 91
  627. //((Ts_Rank(decay_linear(decay_linear(correlation(IndNeutralize(close, IndClass.industry), volume, 9.74928), 16.398), 3.83219), 4.8667) - rank(decay_linear(correlation(vwap, adv30, 4.01303), 2.6809))) * -1)
  628. def WQAlpha91(vol, close, vwap, indclass){
  629. tmp = byRow(contextby{demean, , indclass.row(0)}, close)
  630. trank = mrank(mavg(mavg(mcorr(tmp, vol, 10), 1..16), 1..4), true, 5)
  631. decay = mavg(mcorr(vwap, mavg(vol, 30), 4), 1..3)
  632. return trank - rowRank(decay, percent=true)
  633. }
  634. //alpha 93
  635. //(Ts_Rank(decay_linear(correlation(IndNeutralize(vwap, IndClass.industry), adv81, 17.4193), 19.848), 7.54455) / rank(decay_linear(delta(((close * 0.524434) + (vwap * (1 - 0.524434))), 2.77377), 16.2664)))
  636. def WQAlpha93(vol, close, vwap, indclass){
  637. tmp = byRow(contextby{demean, , indclass.row(0)}, vwap)
  638. trank = mrank(mavg(mcorr(tmp, mavg(vol, 81), 17), 1..20), true, 8)
  639. decay = mavg(close * 0.524434 + vwap * (1 - 0.524434) - mfirst(close * 0.524434 + vwap * (1 - 0.524434), 4), 1..16)
  640. return trank \ float(rowRank(decay, percent=true))
  641. }
  642. //alpha 97
  643. //((rank(decay_linear(delta(IndNeutralize(((low * 0.721001) + (vwap * (1 - 0.721001))), IndClass.industry), 3.3705), 20.4523)) - Ts_Rank(decay_linear(Ts_Rank(correlation(Ts_Rank(low, 7.87871), Ts_Rank(adv60, 17.255), 4.97547), 18.5925), 15.7152), 6.71659)) * -1)
  644. def WQAlpha97(vol, low, vwap, indclass){
  645. tmp = low * 0.721001 + vwap * (1 - 0.721001)
  646. tmpavg = byRow(contextby{avg, , indclass.row(0)}, tmp)
  647. decay = mavg(tmp - tmpavg - mfirst(tmp - tmpavg, 4), 1..20)
  648. trank = mrank(mavg(mrank(mcorr(mrank(low, true, 8), mrank(mavg(vol, 60), true, 17), 5), true, 19), 1..16), true, 7)
  649. return (rowRank(decay, percent=true) - trank) * (-1)
  650. }
  651. //alpha 100
  652. //(0 - (1 * (((1.5 * scale(indneutralize(indneutralize(rank(((((close - low) - (high - close)) / (high - low)) * volume)), IndClass.subindustry), IndClass.subindustry))) - scale(indneutralize((correlation(close, rank(adv20), 5) - rank(ts_argmin(close, 30))), IndClass.subindustry))) * (volume / adv20))))
  653. def WQAlpha100(vol, high, low, close, indclass){
  654. tmprank = rowRank(((close - low - (high - close)) / (high - low) * vol), percent=true)
  655. ind1 = byRow(contextby{demean, , indclass.row(0)}, tmprank)
  656. ind2 = byRow(contextby{demean, , indclass.row(0)}, ind1)
  657. adv20 = mavg(vol, 20)
  658. argmin = mimin(close, 30)
  659. rank1 = rowRank(adv20, percent=true)
  660. rank2 = rowRank(argmin, percent=true)
  661. x = mcorr(close, rank1, 5) - rank2
  662. ind3 = byRow(contextby{demean, , indclass.row(0)}, x)
  663. return -(each(div, 1.5 * ind2, sum(abs(ind2))) - each(div, ind3, sum(abs(ind3))))*(vol \ adv20)
  664. }